doc文档 小学五年级奥数第23周 分解质因数(一)

小学数学 > 五年级上 > 奥数讲义 > 文档预览
6 页 727 浏览 1 收藏 4.8分

摘要:第二十三周分解质因数专题简析:一个自然数的因数中,为质数的因数叫做这个数的质因数。把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。例如:24=2×2×2×3,75=3×5×5。我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。 例题1把18个苹果平均分成若干份,每份大于1个,小于18个。一共有多少种不同的分法?分析先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。练习一1,有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。有哪几种分法?2,195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?3,甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。 例题2有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。共有多少种分法?分析先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。练习二1,把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。2,四个连续奇数的和是19305,这个四奇数分别是多少?3,把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张。

温馨提示:当前文档最多只能预览 5 页,若文档总页数超出了 5 页,请下载原文档以浏览全部内容。
本文档由 匿名用户2023-05-29 05:02:15上传分享
你可能在找
  • 第23讲分解质因数(一)一、专题简析:1、一个自然数的因数中,为质数的因数叫做这个数的质因数。把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。例如:24=2×2×2×3,75=3×5×5。 2、我们数学课本上介绍的分解质因数,是为求最大公约数和最小公倍数服务的。其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题。 一共有多少种不同的分法?练习一1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。有哪几种分法?2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?
    4.8 分 5 页 | 25.00 KB
  • 第24讲分解质因数(二)一、专题简析:许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法求解。 因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。二、精讲精练例题1三个质数的和是80,这三个数的积最大可以是多少? 练习一1、有三个质数,它们的乘积是1001,这三个质数各是多少?2、张明是个初中生,有一次,他参加数学竞赛后,所得的名次、分数和他的岁数三者的积是2910。求张明的成绩、名次和年龄分别是多少?
    4.9 分 4 页 | 30.50 KB
  • 第二十四周分解质因数(二)专题简析:许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法求解。 因此,掌握并灵活应用分解质因数的知识,能解答许多一般方法不能解答的与积有关的应用题。 例题1三个质数的和是80,这三个数的积最大可以是多少?分析三个质数相加的和是偶数,必有一个质数是2。 最大积是2×37×41=3034练习一1,有三个质数,它们的乘积是1001,这三个质数各是多少?2,张明是个初中生,有一次,他参加数学竞赛后,所得的名次、分数和他的岁数三者的积是2910。
    4.7 分 6 页 | 16.50 KB
  • 小升初总复习数与代数篇第一单元数的认识第2节数的整除知识梳理典例精讲【例1】把自然数A和B分解质因数后分别是A=2×3×11×m,B=2×3×7×m。 A、B两数的最大公因数是78,这两个数的最小公倍数是多少? 【分析】这里要明白最大公因数和最小公倍数的意义,A、B两数的最大公因数就是这两个数的全部公有的质因数的积,也就是2×3×m;A、B两数的最小公倍数就是这两个数的全部公有质因数及各自独有质因数的积,也就是
    4.9 分 6 页 | 227.33 KB
  • 五年级第二学期数学期末测试卷(二)一、填空题。 (每空1分,共30分)1.0.25立方米=()立方分米5600毫升=()升4.3立方分米=()立方分米()立方厘米538毫升=()立方厘米30秒=()分75秒=分2.2分数单位是(),它有()个这样的分数单位 7.一个长方体,如果高增加2cm就成为一个正方体,而且表面积要增加56cm2,原来长方体的体积是()cm3。
    5.0 分 12 页 | 41.28 KB
  • 小学一年级奥数练习及答案解析十一讲一年级认识图形例题讲解(一)小学一年级奥数题:认识图形例题讲解(一) 一年级认识图形例题讲解(二)小学一年级奥数题:认识图形例题讲解(二)一年级认识图形例题讲解(三) 小学一年级奥数题:认识图形例题讲解(三) 一年级重叠问题例题讲解(一)小学一年级奥数题:重叠问题例题讲解(一) 一年级重叠问题例题讲解(二)小学一年级奥数题:重叠问题例题讲解(二)
    4.7 分 11 页 | 312.69 KB
  • 小学五年级奥数练习及答案解析十七讲 一般应用题的解法(二) 一般应用题的解法(三) 一般应用题的解法(四) 一般应用题的解法(五)分数数图形问题
    4.9 分 21 页 | 1.35 MB
  • 第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。如何灵活运用平均数的数量关系解答一些稍复杂的问题呢? 下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。 一箱苹果多少个?
    4.9 分 6 页 | 25.00 KB
  • 第16讲倍数问题(一)一、知识要点倍数问题是数学竞赛中的重要内容之一,它是指已知几个数的和或差以及这几个数之间的倍数关系,求这几个数的应用题。 解答倍数问题,必须先确定一个数(通常选用较小的数)作为标准数,即1倍数,再根据其它几个数与这个1倍数的关系,确定“和”或“差”相当于这样的几倍,最后用除法求出1倍数。 二、精讲精练【例题1】两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少厘米?
    4.9 分 5 页 | 25.50 KB
  • 第10讲数阵一、知识要点填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。这里,和同学们讨论一些数阵的填法。 解答数阵问题通常用两种方法:一是待定数法,二是试验法。待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。 试验法就是根据题中所给条件选准突破口,确定填数的可能范围。把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。
    4.8 分 4 页 | 91.83 KB
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载
热门文档