doc文档 小学五年级奥数第28周 行程问题(一)

小学数学 > 五年级上 > 奥数讲义 > 文档预览
5 页 1306 浏览 2 收藏 4.7分

摘要:第28周行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。例1甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇,东、西两地相距多少千米?分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行5648=8(千米)。64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。甲、乙两地相距多少千米?3,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。东村到西村的路程是多少米? 例2快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=

温馨提示:当前文档最多只能预览 5 页,若文档总页数超出了 5 页,请下载原文档以浏览全部内容。
本文档由 匿名用户2023-05-29 05:03:32上传分享
你可能在找
  • 第28周行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。 2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。甲、乙两地相距多少千米?3,甲、乙二人同时从
    4.7 分 5 页 | 30.00 KB
  • 第30讲行程问题(三)一、专题简析:很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。 因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程方便解题。 练习一1、甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。1小时后,货车从乙地开出,每小时行62千米。货车开出几小时后与客车相遇?
    4.9 分 6 页 | 29.00 KB
  • 第二十九周行程问题(二)专题简析:本周的主要问题是“追及问题”。追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。 追及问题的基本数量关系是:速度差×追及时间=追及路程解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。 抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。例1中巴车每小时行60千米,小轿车每小时行84千米。
    4.9 分 6 页 | 20.00 KB
  • 第31讲行程问题(四)一、专题简析:通过前面对行程应用题的学习,同学们可以发现,行程问题大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度×时间(3)同向而行:追及时间 =追及距离÷速度差如果上述的几种情况交织在一起,组成的应用题将会丰富多彩、千变万化。 解答这些问题时,我们还是要理清题中已知条件与所求问题之间的关系,同时采用“转化”、“假设”等方法,把复杂的数量关系转化为简单的数量关系,把一复杂的问题转化为几个简单的问题逐一进行解决。
    4.9 分 6 页 | 26.50 KB
  • 第36周火车行程问题专题简析:有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。 如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题。 解答火车行程问题可记住以下几点:1,火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;2,两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3,两车同向而行,快车从追上到超过慢车所用的时间
    4.8 分 6 页 | 18.00 KB
  • 第三十周行程问题(三)专题简析:很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。 因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程,方便解题。 练习一1,甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。1小时后,货车从乙地开出,每小时行62千米。货车开出几小时后与客车相遇?
    4.8 分 4 页 | 25.50 KB
  • 第三十五周行程问题(三)专题简析:本周主要讲结合分数、百分数知识相关的较为复杂抽象的行程问题。要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。 如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,则5小时相遇。那么A、B两地的距离是多少千米?3、甲、乙两人同时骑自行车从东、西两镇相
    4.6 分 5 页 | 34.50 KB
  • 第29讲行程问题(二)一、专题简析:1、追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。 追及问题的基本数量关系是:速度差×追及时间=追及路程2、解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。 抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。二、精讲精练例1中巴车每小时行60千米,小轿车每小时行84千米。
    4.7 分 6 页 | 26.50 KB
  • 第36讲火车行程问题一、专题简析:有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。 如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题。 解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间
    4.7 分 5 页 | 25.00 KB
  • 第33讲行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。 其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。行程问题的主要数量关系是:距离=速度×时间。 解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
    5.0 分 7 页 | 48.29 KB
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载
热门文档