doc文档 小学五年级奥数第36周火车行程问题

小学数学 > 五年级上 > 奥数讲义 > 文档预览
6 页 1552 浏览 9 收藏 4.8分

摘要:第36周火车行程问题专题简析:有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题。解答火车行程问题可记住以下几点:1,火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;2,两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3,两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。 例1甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。乙火车在前,两火车在双轨车道上行驶。甲火车从后面追上到完全超过乙火车要用多少秒?分析甲火车从追上到超过乙火车,比乙火车多行了甲、乙两火车车身长度的和,而两车速度的差是18-13=5米,因此,甲火车从追上到超过乙火车所用的时间是:(210+140)÷(18-13)=70秒。练习一1,一列快车长150米,每秒行22米;一列慢车长100米,每秒行14米。快车从后面追上慢车到超过慢车,共需几秒钟?2,小明以每秒2米的速度沿铁路旁的人行道跑步,身后开来一列长188米的火车,火车每秒行18米。问:火车追上小明到完全超过小明共用了多少秒钟?3,A火车长180米,每秒行18米;B火车每秒行15米。两火车同方向行驶,A火车从追上B火车到超过它共用了100秒钟,求B火车长多少米? 例2一列火车长180米,每秒钟行25米。全车通过一条120米的山洞,需要多长时间?分析由于火车长180米,我们以车头为

温馨提示:当前文档最多只能预览 5 页,若文档总页数超出了 5 页,请下载原文档以浏览全部内容。
本文档由 匿名用户2023-05-29 05:05:59上传分享
你可能在找
  • 第36讲火车行程问题一、专题简析:有关火车过桥、火车过隧道、两列火车车头相遇到车尾相离等问题,也是一种行程问题。在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。 如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题。 解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间
    4.7 分 5 页 | 25.00 KB
  • 第30讲行程问题(三)一、专题简析:很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。 因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程方便解题。
    4.9 分 6 页 | 29.00 KB
  • 第28讲行程问题(一)一、专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。
    4.7 分 5 页 | 24.00 KB
  • 第28周行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。
    4.7 分 5 页 | 30.00 KB
  • 第二十九周行程问题(二)专题简析:本周的主要问题是“追及问题”。追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。 追及问题的基本数量关系是:速度差×追及时间=追及路程解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。
    4.9 分 6 页 | 20.00 KB
  • 第31讲行程问题(四)一、专题简析:通过前面对行程应用题的学习,同学们可以发现,行程问题大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度×时间(3)同向而行:追及时间 解答这些问题时,我们还是要理清题中已知条件与所求问题之间的关系,同时采用“转化”、“假设”等方法,把复杂的数量关系转化为简单的数量关系,把一复杂的问题转化为几个简单的问题逐一进行解决。
    4.9 分 6 页 | 26.50 KB
  • 第三十周行程问题(三)专题简析:很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。 因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程,方便解题。
    4.8 分 4 页 | 25.50 KB
  • 第三十五周行程问题(三)专题简析:本周主要讲结合分数、百分数知识相关的较为复杂抽象的行程问题。要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。
    4.6 分 5 页 | 34.50 KB
  • 第29讲行程问题(二)一、专题简析:1、追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。 追及问题的基本数量关系是:速度差×追及时间=追及路程2、解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。
    4.7 分 6 页 | 26.50 KB
  • 第35讲行程问题(三)一、知识要点本周主要讲结合分数、百分数知识相关的较为复杂抽象的行程问题。要注意:出发的时间地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。
    4.8 分 6 页 | 48.52 KB
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载
热门文档