doc文档 小学六年级奥数第26周 乘法和加法原理

小学数学 > 六年级上 > 奥数讲义 > 文档预览
4 页 807 浏览 9 收藏 4.7分

摘要:第二十六周乘法和加法原理专题简析:在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。例题1:由数字0,1,2,3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。①要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。练习1:1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?3、由数字1,2,3,4,5,6,7,8,可组成多少个:①三位数;②三位偶数;③没有重复数字的三位偶数;④百位是8的没有重复数字的三位数;⑤百位是8的没有重复数字的三位偶数。例题2:有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形?要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑:两个正方体向上一

温馨提示:当前文档最多只能预览 5 页,若文档总页数超出了 5 页,请下载原文档以浏览全部内容。
本文档由 匿名用户2023-05-13 05:03:11上传分享
你可能在找
  • 第26讲乘法和加法原理一、知识要点在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。 做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。二、精讲精练【例题1】由数字0,1,2,3组成三位数,问:①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数?在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。①要求组成不相等的三位数,所以数字可以重复使用。
    4.9 分 5 页 | 30.00 KB
  • 小学六年级奥数题练习及答案解析汇总小学六年级奥数题练习题,题后附有详细的答案及分析,同学们可以对六年级所学奥数知识进行巩固加深。 六年级奥数题:浓度问题六年级奥数:植树问题六年级奥数题:牛吃草问题六年级奥数题:工程问题六年级奥数应用题综合训练及解析(一)六年级奥数应用题综合训练及解析(二)六年级奥数应用题综合训练及解析(三)六年级奥数应用题综合训练及解析 (四)六年级奥数应用题综合训练及解析(五)六年级奥数题:位置关系问题六年级奥数题:分数的计算(一)六年级奥数题:分数的计算(二)六年级奥数题:分数的计算(三)六年级奥数题:浓度问题【试题】:浓度为60%
    4.6 分 7 页 | 30.00 KB
  • 第29讲抽屉原理(一)一、知识要点如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。 这些简单内的例子就是数学中的“抽屉原理”。基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。本周我们先来学习第(1)条原理及其应用。
    4.9 分 5 页 | 32.50 KB
  • 第二十九周抽屉原理(一)专题简析:如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。 这些简单内的例子就是数学中的“抽屉原理”。基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。 利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。本周我们先来学习第(1)条原理及其应用。
    4.7 分 5 页 | 24.50 KB
  • 第三十周抽屉原理(二)专题简析:在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是 根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
    4.7 分 3 页 | 25.00 KB
  • 六年级高难度奥数练习题及详细解析(1)1六年级高难度奥数练习题及详细解析(2)2六年级高难度奥数练习题及详细解析六年级奥数天天练(高难度)奥数,即奥林匹克数学竞赛,是一项旨在培养学生逻辑思维、创造力和解决问题能力的数学竞赛活动 对于小学生来说,参加奥数的训练不仅可以提高他们的数学水平,还可以培养他们的思考能力和解决问题的方法。因此,在六年级阶段进行奥数训练是十分重要且有益的。 在接下来的内容中,我将为大家提供一些高难度的奥数题目,并给出详细解析。希望这些题目能够帮助大家更好地理解和掌握相关知识点。
    4.9 分 4 页 | 12.39 KB
  • 第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是 根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
    5.0 分 3 页 | 29.50 KB
  • 第3课时加法交换律和乘法交换律一、运用加法交换律和乘法交换律在里填上适当的数。 53+47=47+36+64=64+25×36=36×57×82=82×二、用竖式计算下面各题,并运用加法交换律或乘法交换律进行验算。
    4.9 分 1 页 | 124.27 KB
  • 第33讲包含与排除(容斥原理)一、专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。 两个集合中可以做加法运算,把两个集合A、B合并在一起,就组成了一个新的集合C。 二、精讲精练例1五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。两种报纸都订的有多少人?练习一1、一个班的52人都在做语文和数学作业。
    4.7 分 5 页 | 25.00 KB
  • 小学四年级奥数举一反三第1讲至第40讲(全精品)目录第1讲第2讲第3讲第4讲第5讲第6讲第7讲第8讲第9讲第10讲找规律(一)找规律(二)简单推理应用题(一)算式谜(一)算式谜(二)最优化问题巧妙求和( 一)变化规律(一)变化规律第11讲第12讲第13讲第14讲第15讲第16讲第17讲第18讲第19讲第20讲错中求解简单列举和倍问题植树问题图形问题巧妙求和数数图形数数图形应用题速算与巧算第二十一周速算与巧算 (二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周第三十二周第三十三周第三十四周第三十五周第三十六周第三十七周第三十八周第三十九周还原问题逻辑推理速算与巧算
    4.8 分 79 页 | 753.06 KB
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载
热门文档