doc文档 小学六年级奥数第35讲 行程问题(三)

小学数学 > 六年级上 > 奥数讲义 > 文档预览
6 页 1554 浏览 9 收藏 4.8分

摘要:第35讲行程问题(三)一、知识要点本周主要讲结合分数、百分数知识相关的较为复杂抽象的行程问题。要注意:出发的时间地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。二、精讲精练【例题1】客车和货车同时从A、B两地相对开出。客车每小时行驶50千米,货车的速度是客车的80%,相遇后客车继续行3.2小时到达B地。A、B两地相距多少千米?客车3.2小时A图35——1B货车如图35-1所示,要求A、B两地相距多少千米,先要求客、货车合行全程所需的时间。客车3.2小时行了50×3.2=160(千米),货车行160千米所需的时间为:160÷(50×80%)=4(小时)所以(50+50×80%)×4=360(千米)答:A、B两地相距360千米。练习1:1、甲、乙两车分别从A、B两地同时出发相向而行,相遇点距中点320米。已知甲的速度是乙的速度的,甲每分钟行800米。求A、B两地的路程。2、甲、乙两人分别从A、B两地同时出发相向而行,匀速前进。如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,则5小时相遇。那么A、B两地的距离是多少千米? 3、甲、乙两人同时骑自行车从东、西两镇相向而行,甲、乙的速度比是3:4。已知甲行了全程的,离相遇地点还有20千米,相遇时甲比乙少行多少千米?【例题2】从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是1:2:3,某人走这三段路所用的时间之比是4:5:6。已知他上坡时的速度为每小时2.5千米,路程全长为20千米。此人从甲地走到乙地需多长时间?要求从甲地走到乙地需多长时间,先求上坡时用的时间。上

温馨提示:当前文档最多只能预览 5 页,若文档总页数超出了 5 页,请下载原文档以浏览全部内容。
本文档由 匿名用户2023-05-14 05:04:24上传分享
你可能在找
  • 第三十五周行程问题(三)专题简析:本周主要讲结合分数、百分数知识相关的较为复杂抽象的行程问题。要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。 客车3.2小时A图35——1B货车如图35-1所示,要求A、B两地相距多少千米,先要求客、货车合行全程所需的时间。
    4.6 分 5 页 | 34.50 KB
  • 第30讲行程问题(三)一、专题简析:很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。 因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程方便解题。 二、精讲精练:例1A、B两地相距259千米,甲车从A地开往B地,每小时行38千米;半小时后,乙车从B地开往A地,每小时行42千米。乙车开出几小时后和甲车相遇?
    4.9 分 6 页 | 29.00 KB
  • 小学四年级奥数举一反三第1讲至第40讲(全精品)目录第1讲第2讲第3讲第4讲第5讲第6讲第7讲第8讲第9讲第10讲找规律(一)找规律(二)简单推理应用题(一)算式谜(一)算式谜(二)最优化问题巧妙求和( 一)变化规律(一)变化规律第11讲第12讲第13讲第14讲第15讲第16讲第17讲第18讲第19讲第20讲错中求解简单列举和倍问题植树问题图形问题巧妙求和数数图形数数图形应用题速算与巧算第二十一周速算与巧算 (二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周第三十二周第三十三周第三十四周第三十五周第三十六周第三十七周第三十八周第三十九周还原问题逻辑推理速算与巧算
    4.8 分 79 页 | 753.06 KB
  • 第28讲行程问题(一)一、专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。 二、精讲精练例1甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车在距中点32千米处相遇,东、西两地相距多少千米?
    4.7 分 5 页 | 24.00 KB
  • 第35讲估值问题一、专题简析:在日常生活中,某些量往往只需要作一个大致的估计,如对某厂下一年生产的总产值的估计就只能是一个大概数,很难也没有必要精确到几元几角几分。 估算常采用的方法是:1、省略尾数取近似数;2、用放大或缩小的方法来确定某个数或整个算式的取值范围进行估算。 二、精讲精练例1计算12345678910111213÷31211101987654321商的小数点后前三位数字是多少?练习一1、计算5.43826÷2.01202(保留两位小数)。
    4.6 分 5 页 | 54.50 KB
  • 第31讲行程问题(四)一、专题简析:通过前面对行程应用题的学习,同学们可以发现,行程问题大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度×时间(3)同向而行:追及时间 解答这些问题时,我们还是要理清题中已知条件与所求问题之间的关系,同时采用“转化”、“假设”等方法,把复杂的数量关系转化为简单的数量关系,把一复杂的问题转化为几个简单的问题逐一进行解决。 二、精讲精练例1甲、乙两地相距420千米,一辆汽车从甲地开到乙地共用了8小时,途中,有一段路在整修路面,汽车行驶这段路时每小时只能行20千米,其余时间每小时行60千米。整修路面的一段路长多少千米?
    4.9 分 6 页 | 26.50 KB
  • 第33讲行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。 其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。行程问题的主要数量关系是:距离=速度×时间。 它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。(3)同向而行:速度慢的在前,快的在后。
    5.0 分 7 页 | 48.29 KB
  • 第34讲行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时 二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。甲按顺时针方向行走,乙与丙按逆时针方向行走。甲第一次遇到乙后1分钟于到丙,再过3分钟第二次遇到乙。 练习1:1、甲、乙、丙三
    4.6 分 7 页 | 61.53 KB
  • 第29讲行程问题(二)一、专题简析:1、追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。 追及问题的基本数量关系是:速度差×追及时间=追及路程2、解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。 二、精讲精练例1中巴车每小时行60千米,小轿车每小时行84千米。两车同时从相距60千米的两地同方向开出,且中巴在前。几小时后小轿车追上中巴车?
    4.7 分 6 页 | 26.50 KB
  • 小学六年级奥数题练习及答案解析汇总小学六年级奥数题练习题,题后附有详细的答案及分析,同学们可以对六年级所学奥数知识进行巩固加深。 六年级奥数题:浓度问题六年级奥数:植树问题六年级奥数题:牛吃草问题六年级奥数题:工程问题六年级奥数应用题综合训练及解析(一)六年级奥数应用题综合训练及解析(二)六年级奥数应用题综合训练及解析(三)六年级奥数应用题综合训练及解析 (四)六年级奥数应用题综合训练及解析(五)六年级奥数题:位置关系问题六年级奥数题:分数的计算(一)六年级奥数题:分数的计算(二)六年级奥数题:分数的计算(三)六年级奥数题:浓度问题【试题】:浓度为60%
    4.6 分 7 页 | 30.00 KB
本站APP下载(扫一扫)
活动:每周日APP免费下载全站文档
本站APP下载
热门文档